Investigation of Iron Metabolism in Mice Expressing a Mutant Menke’s Copper Transporting ATPase (Atp7a) Protein with Diminished Activity (Brindled; MoBr/y)

نویسندگان

  • Sukru Gulec
  • James F. Collins
چکیده

During iron deficiency, perturbations in copper homeostasis have frequently been documented. Previous studies in iron-deprived rats demonstrated that enterocyte and hepatic copper levels increase and a copper transporter (the Menkes Copper ATPase; Atp7a) is induced in the duodenal epithelium in parallel to iron transport-related genes (e.g. Dmt1, Dcytb, Fpn1). Moreover, two ferroxidase proteins involved in iron homeostasis, hephaestin expressed in enterocytes and ceruloplasmin, produced and secreted into blood by the liver, are copper-dependent enzymes. We thus aimed to test the hypothesis that Atp7a function is important for the copper-related compensatory response of the intestinal epithelium to iron deficiency. Accordingly, iron homeostasis was studied for the first time in mice expressing a mutant Atp7a protein with minimal activity (Brindled [Mo (Br) (/y) ]). Mutant mice were rescued by perinatal copper injections, and, after a 7-8 week recovery period, were deprived of dietary iron for 3 weeks (along with WT littermates). Adult Mo (Br) (/y) mice displayed copper-deficiency anemia but had normal iron status; in contrast, iron-deprived Mo (Br) (/y) mice were iron deficient and more severely anemic with partial amelioration of the copper-deficient phenotype. Intestinal iron absorption in both genotypes (WT and Mo (Br) (/y) ) increased ∼3-fold when mice consumed a low-iron diet and ∼6-fold when mice were concurrently bled. WT mice exhibited no alterations in copper homeostasis in response to iron deprivation or phlebotomy. Conversely, upregulation of iron absorption was associated with increased enterocyte and liver copper levels and serum ferroxidase (ceruloplasmin) activity in Mo (Br) (/y) mice, typifying the response to iron deprivation in many mammalian species. We thus speculate that a copper threshold exists that is necessary to allow appropriate regulate of iron absorption. In summary, Mo (Br) (/y) mice were able to adequately regulate iron absorption, but unlike in WT mice, concurrent increases in enterocyte and liver copper levels and serum ferroxidase activity may have contributed to maintenance of iron homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neurochemical and immunocytochemical studies of catecholamine system in the brindled mouse.

The distribution of immunoreactive catecholamine neurons and fibers was investigated in brindled mottled mouse, a murine model of Kinky hair syndrome (KHS), using antisera against tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH). In all mice, including normal littermate controls, a transient increase of TH-immunoreactive neurons (TH-IN) was observed in the cerebral cortex during th...

متن کامل

Molecular basis of the brindled mouse mutant (Mo(br)): a murine model of Menkes disease.

The brindled mouse mutant (Mo(br)) is the closest animal model of the human genetic copper deficiency, Menkes disease, which is presumed to be due to a mutation at the X-linked mottled locus (Mo). The mutant mice are hypopigmented and die at around 15 days after birth, but can be saved by treatment with copper before the 10th postnatal day. Menkes disease has been shown to be due to mutations o...

متن کامل

Copper stabilizes the Menkes copper-transporting ATPase (Atp7a) protein expressed in rat intestinal epithelial cells.

Iron deficiency decreases oxygen tension in the intestinal mucosa, leading to stabilization of hypoxia-inducible transcription factor 2α (Hif2α) and subsequent upregulation of genes involved in iron transport [e.g., divalent metal transporter (Dmt1) and ferroportin 1 (Fpn1)]. Iron deprivation also alters copper homeostasis, reflected by copper accumulation in the intestinal epithelium and induc...

متن کامل

New insights into CNS requirements for the copper-ATPase, ATP7A. Focus on "Autonomous requirements of the Menkes disease protein in the nervous system".

COPPER IS INDISPENSABLE for development and function of the central nervous system (CNS). This is dramatically illustrated by the severe neuropathological deficits in Menkes disease, an X-linked copper deficiency disorder resulting from mutation of the gene that encodes an essential copper transporting P1B-type ATPase, ATP7A. Since its discovery over two decades ago, the role of ATP7A in copper...

متن کامل

Intracellular localization and loss of copper responsiveness of Mnk, the murine homologue of the Menkes protein, in cells from blotchy (Mo blo) and brindled (Mo br) mouse mutants.

Menkes disease is an X-linked copper deficiency disorder that results from mutations in the ATP7A ( MNK ) gene. A wide range of disease-causing mutations within ATP7A have been described, which lead to a diversity of phenotypes exhibited by Menkes patients. The mottled locus ( Mo, Atp7a, Mnk ) represents the murine homologue of the ATP7A gene, and the mottled mutants exhibit a diversity of phen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013